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Thermophysical properties of gases, liquids, and solids composed of particles interactin
with a short-range attractive potential
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A short-range polynomial interaction potential is introduced which has both a repulsive core and an attrac-
tive part. It is cut off smoothly such that its first and second derivatives vanish at the cutoff distance. The
potential therefore enables efficient simulation studies of a model material that exhibits similarities to a full
~but computationally expensive! classical Lennard-Jones system. Thermophysical properties of the model are
calculated by~nonequilibrium! molecular dynamics computer simulations and compared with analytical re-
sults. Among the quantities studied is the pressure as a function of the density for various temperatures.
Equations of state for the fluid and the solid are tested. The coexistence of gaseous,~metastable! liquid, and fcc
solid phases is found for a range of temperatures. Bulk and shear moduli are computed. The response of the
system to a shear deformation with a constant shear rate is analyzed. The liquid shows viscoelastic behavio
that can be described with a Maxwell model. The solid behaves as an elastic medium up to a finite deformation
and then undergoes a transition to plastic flow, which is stick-slip-like at small shear rates and continuous at
higher ones.

DOI: 10.1103/PhysRevE.64.011201 PACS number~s!: 83.50.2v, 47.10.1g, 64.10.1h, 46.35.1z
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I. INTRODUCTION

Statistical physics aims to explain the thermophysic
properties of matter and dynamic phenomena occurring
nonequilibrium processes on the basis of the properties
atoms and molecules and their interactions. Molecular
namics ~MD! and Monte Carlo computer simulations pe
formed during recent decades have helped enormously
achieve this goal. The study of models plays an import
role. Simple systems composed of~effectively! spherical par-
ticles are modeled with potentials that are linear combin
tions of the inverse power of the distancer between two
particles. Both the repulsion at short distances and the att
tion at larger distances are described in this way. The d
tance where the potential vanishes defines a character
length, the ‘‘diameter’’r 0 of a particle. Such potentials wer
already used almost a century ago@1#; they are commonly
referred to as Lennard-Jones~LJ! potentials@2#. In computer
simulations, these potentials are usually cut off at a fin
distanceh, e.g.,h52.5r 0 was popular for some time. Shorte
cutoff distances are preferred in many nonequilibrium m
lecular dynamics~NEMD! simulations. The potential has to
be shifted such that it vanishes atr 5h and, for MD simula-
tions, it is desirable that the force also vanishes at the cu
distance. A case favored in many numerical studies is a c
off at the minimum, often referred to as the~purely repul-
sive! WCA potential@3#. Other amendments of the LJ poten
tial have been proposed, e.g., the LJ potential is used unti
point of inflection, and beyond this point it is replaced by
third order spline function such that the potential and its fi
derivative are continuous@4#. When one does not aim to
mimic a particular substance, but just intends to catch cer
essential features of the thermophysical behavior within
restricted temperature range, one may use alternative fu
tional forms for the potential with an even smoother cuto
-651X/2001/64~1!/011201~10!/$20.00 64 0112
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@5#. Of course others have previously noticed the neces
for a smooth cutoff, e.g., Hoover and Posch@6#, who used
the potential@12(r /r 0)2#4, which, however, is rather differ-
ent from the LJ potential and has a vanishing force for
going to zero.

Recently, it has been demonstrated that the density de
dence of the energy and the pressure of the WCA fluid a
fcc solid are reproduced by a short-range repulsive poly
mial potential@7#. The smooth cutoff, where the second d
rivative of the potential is also continuous, is not only adva
tageous for the integration of the equations of motion,
particular for systems in nonequilibrium and with strong gr
dients as in shock waves. It is essential for the computa
of elasticity coefficients in the solid phase since the mic
scopic expressions for the elasticity coefficients involve
second derivative of the potential. The same applies for
computation of the configurational temperature@8#. Here, a
smoothly cut-off simple polynomial function is used that h
a repulsive and a relatively short-range attractive~SHRAT!
part (h51.5r 0). Properties of the model system in its ga
eous,~metastable! liquid, and solid states are computed b
MD and NEMD simulations and, where possible, compar
with analytical calculations, as well as with the behavior
real substances.

The thermophysical properties presented are the pres
as a function of the density at various temperatures, elasti
coefficients, non-Newtonian shear viscosity, and viscoela
behavior of the liquid, as well as the elastic behavior und
shear and the transition to plastic flow in the solid.

II. THE POTENTIAL CURVES

The 6-12 Lennard-Jones reference potential readsfLJ(r )
54F0@(r /r 0)2122(r /r 0)26#. The quantitiesF0 and r 0 set
the characteristic energy and length scales. T
SHRAT potential to be used here is of the formfSHRAT(r )
©2001 The American Physical Society01-1
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SIEGFRIED HESS AND MARTIN KRÖGER PHYSICAL REVIEW E64 011201
;3(h2r )424(h2r min)(h2r)3 for r<h and fSHRAT(r )50
for r .h. This function has a minimum atr 5r min . Its inter-
section with the horizontal axis isr 05(4/3)r min2(1/3)h.
This functional form has been recently used for the effec
two-particle interaction in a variant of the embedded at
method for metals@9,10#.

If one requires, as in@5#, that the force atr 5r 0 and the
depth of the potential atr 5r min be equal to the correspond
ing LJ values, one findsh5(113/81)r 0'1.4r 0 and r min
5(89/81)r 0'1.1r 0. The resulting potential is 24F0(1
2r /r 0)@(h2r )/(h2r min)#

3. Here we choose the similar va
uesh5(3/2)r 0 , r min5(9/8)r 0 and set the depth of the pote
tial equal toF0, in analogy with the LJ potential. The ex
plicit expression for our model potential therefore reads

fSHRAT~r !5
512

27
F0S 12

r

r 0
D S 322

r

r 0
D 3

, r<1.5r 0 ,

~1!

andfSHRAT(r )50 for r .1.5r 0. In units ofF0 /r 0, the force
at r 5r 0 is 512/27'19. The corresponding value for the L
potential is 24. Notice that this potential is finite atr 50, viz,
fSHRAT(0)5512F0. For temperatures below 10F0 /kB , this
is of no practical concern since the Boltzmann fac
exp(2F0 /kBT) governing the fraction of particles that ca
reach this distance is smaller than 6310223.

In Fig. 1 the short-range potential used here and the
potential are plotted as functions of the distancer. In numeri-
cal calculations and in the graphs displayed here, all phys
quantities are expressed in the standard LJ units of@11–14#,
e.g., lengths and energies are given in units ofr 0 and F0.
Following common practice the dimensionless variables
denoted by the same symbols as the corresponding phy
quantities when no danger of confusion exists.

In dimensionless notation, the LJ and SHRAT potent
read fLJ(r )54(r 2122r 26) and fSHRAT(r )5(512/27)(1
2r )(322r )3, r<3/2, whereasfSHRAT(r )50 for r .3/2.
Similarly, the number densityn5N/V, where N and
V are the number of particles and the volume of the syst
and the temperatureT are expressed in units ofnref5r 0

23

and Tref5F0 /kB , respectively. The unit for the pressure
pref5F0r 0

23.

FIG. 1. The short-range attractive potential~SHRAT! function
~thick curve! and the Lennard-Jones~LJ! potential~thinner curve!
as functions of the distancer. All physical quantities are in standar
LJ units.
0112
e

r

J

al

re
ical

ls

,

III. PRESSURE VERSUS DENSITY

A. Dilute gas and ideal solid

Simple analytic expressions for the pressure are availa
both for low density gases and for ideal solids. The press
of a dilute gas, just one power in the density beyond the id
gas, is given byp5nkBT@11nB2(T)# with the second virial
coefficient ~per particle! B2(T). In Fig. 2 the second viria
coefficient, in units ofr 0

3, is displayed as a function of th
temperature for the SHRAT~upper, thicker curve! and for
the LJ ~lower, thinner curve! potentials. For spherical par
ticles, the second virial coefficient is computed according

B2~T!52pE
0

`

$12exp@2f~r !/kBT#%r 2dr. ~2!

In the calculation, the LJ potential is cut off atr 58r 0. The
dashed horizontal line marks the valueB2

LJ(1). In the
SHRAT case, this value is reached atT/Tref'0.6.

In the limit of low temperatures, one may assume t
the particles occupy ideal lattice sites. Then one calcula
the ‘‘cold’’ energy per particlee5ecold and the ‘‘cold’’ pres-
sure p5pcold by inserting the density dependent near
neighbor distanceafcc5(A2/2)(4/n)1/3r 0 for a close packed
cubic ~or hexagonal! solid into the two-particle energy an
the virial, summed over the 12 nearest neighbors, w
the density does not exceed 32/27'1.185. Then one
has, ecold(n)56f„afcc(n)…, and pcold(n)5n2]ecold/]n5
22nafcc(n)f8„afcc(n)…. Here f and f8 stand for the
SHRAT potential and its derivative with respect to the d
tance. For higher densities, the contributions from the n
coordination shells have to be taken into account. The res
ing curves are displayed in Fig. 3. The dashed curves s
the corresponding results for particles placed on body c
tered cubic~bcc! lattice sites, where the nearest neighb
distance is linked with the density byabcc5(A3/2)
3(2/n)1/3r 0. In that case, the eight first and the six seco
nearest neighbors have to be taken into account for dens
less than 32A2/27'1.676. Clearly, for densities close t

FIG. 2. The second virial coefficient pertaining to the SHRA
potential ~thick curve! and to the LJ potential~thinner curve! as
functions of the temperatureT. All physical quantities are in stan
dard LJ units.
01-2
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THERMOPHYSICAL PROPERTIES OF GASES, . . . PHYSICAL REVIEW E 64 011201
n/nref51, the minimal energy is lower in the fcc solid. Th
fcc energy minimume526F0 occurs at the densityn/nref

54/(9A2/8)3'0.993.

B. Remarks on MD simulations

Simulations at the constant temperaturesT/Tref
50.01,0.1,0.4,0.6,0.8,1.0,2.0 and constant number dens
n5N/V (NVT ensemble simulations! in the rangen/nref
50.1, . . . ,1.1 were performed forN5438352048 par-
ticles, where the initial positions were fcc lattice sites. Th
equations of motion were integrated with the velocity Verl
algorithm with the time stepdt/t ref50.005. The LJ reference
time is t ref5r 0(m/F0)(1/2), andm is the mass of a particle. A
cubic simulation box with volumeV and periodic boundary
conditions were used. The temperature was kept constan
rescaling the magnitude of the particle velocities, which co
responds to the Gaussian constraint of constant kinetic
ergy. Typically, the system was aged for 2000 or more tim
steps corresponding to 10 or more reduced time units bef
the data were extracted as time averages over 4000 or m
time steps corresponding to 20 or more time units. Due to
link list procedure@15#, the computational time increases lin
early with the number of particlesN whenN.500.

The pressurep5nkBT1ppot is the sum of the ‘‘kinetic’’
or ‘‘ideal gas’’ contributionnkBT and the ‘‘potential’’ con-
tribution ppot. The latter quantity is computed according to

V ppot5
1

3 K (
i

r i
•Fi L 5

1

3 K (
i , j

r i j
•Fi j L . ~3!

The angular brackets indicate a time average. HereFi

5( j Þ iF
i j is the force acting on particlei, Fi j 5F(r i j ) is the

force exerted on particlei from particle j, and F(r )
52] f(r )/]r . The symbol( i , j means a double summation
over pairs of particles, withi less thanj.

C. Pressure in the fluid and solid states

In the four graphs of Fig. 4 the symbols mark the com
puted pressures for given densities~via MD! for the tempera-

FIG. 3. The cold energye ~per particle! and pressurep as func-
tions of the density for ideal fcc~solid curves! and bcc~dashed
curves! solids. All physical quantities are in standard LJ units.
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turesT/Tref52.0,1.0,0.8,0.6~from top left to bottom right!.
Most data points pertain to the fluid, gaseous, or liquid st
of the system. Data at higher densities for the temperatu
T/Tref51.0,0.8,0.6 are for the fcc solid. AtT/Tref52.0 a
fluid state exists only in the density range shown. On t
other hand, atT/Tref50.6, gaseous, liquid, and solid state
exist at small, intermediate, and higher densities.

For the lower temperaturesT/Tref50.6,0.4,0.1,0.01 the
pressure of the fcc solid, as a function of the density,
displayed in Fig. 5. Negative values of the pressure, althou
indicating a mechanically unstable state, reveal that the
uid, and even more the solid, can withstand some tension

FIG. 4. The pressure as a function of the density for the te
peraturesT/Tref50.6,0.8,1.0,2.0. The dots indicate the results fro
the MD calculation. Except for the points at high densities, mark
‘‘fcc’’ for T/Tref51.0,0.8 and joined by a thick curve forT/Tref

50.6, the MD data pertain to the fluid, gaseous, or liquid state
the system. The curves stem from theoretical expressions expla
in the text. All physical quantities are in standard LJ units.

FIG. 5. The pressure in the fcc solid state, as a function of
density for the temperaturesT50.6,0.4,0.1,0.01~from left to right!.
The dots mark the results from the MD calculation, and the curv
stem from theoretical expressions explained in the text. All physi
quantities are in standard LJ units.
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SIEGFRIED HESS AND MARTIN KRÖGER PHYSICAL REVIEW E64 011201
to internal attraction. The theoretical pressure isothe
shown as curves are explained in the next subsection.

D. Equation of state

A modification of the Carnahan-Starling~CS! equation of
state@16# for hard spheres to particles with softer repulsi
interaction has been suggested and tested successful
@17#. The equation of state involves the second virial coe
cient and an effective volumeveff , to be defined below,
which also depends on the temperature. For potentials
attraction, an augmented van der Waals approximation
been proposed and tested for the LJ fluid@18#. A similar
approach is used here. The potential contribution to the p
sure of the fluid is a sum of the modified CS expressi
involving an effective volumeveff(T), and terms associate
with the attractive part of the interaction,ppot5prep1patt,
with

prep5n kBTS nB2
rep

~12n veff!
2

12
~n veff!

2

~12n veff!
3D , ~4!

patt5n2kBT~B22B2
rep!@11c~n,T!#. ~5!

HereB2
rep is the second virial coefficient evaluated accordi

to Eq. ~2!, but with the repulsive partf rep of the SHRAT
potential only, i.e., the potential is cut off at its minimum an
shifted such that it vanishes atr /r 059/8. For comparison,
the repulsive part of the LJ potential is the WCA potenti
The second virial coefficient calculated with the full SHRA
potential is denoted byB2. The correctionc(n,T), needed at
higher densities, is presented later. The effective volu
veff(T) is given byveff(T)5(p/6)deff

3 , with the effective di-
ameterdeff5deff(T) determined by the distance where th
repulsive partf rep of the binary interaction potential equa
the thermal energy:f rep(deff)5kBT. At the temperatureT
5Tref , one hasdref5r 0 and consequentlyveff5(p/6)r 0

3

'0.5236r 0
3 for both the LJ and the SHRAT interactions. I

the following, we use the relatively simple LJ expressi
veff(T)5(p/6)r 0

3$2/@11(kBT/F0)1/2#%1/2 for the determina-
tion of the effective volume.

The dashed curves shown in Fig. 4 are the equation
state where only the repulsive part of the interaction has b
taken into account. The thick and thin full curves correspo
to the augmented van der Waals approximation withc50
and

c5~3nveff16n2veff
2 !exp~2F0 /kBT!,

respectively. This expression, which fits the MD data qu
well, is based on an educated guess rather than on a pr
derivation. The temperature and the density at the crit
point, as inferred from this equation of state, areTc /Tref
50.794 andnc /nref50.32. The pressure at the critical poi
is pc /pref50.0097'0.01. The compressibility factorZ
5p/(nkBT) at the critical point isZc'0.38, very close to
the value 3/850.375 following from the original van de
Waals equation. For comparison, the last number is slig
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smaller, viz.,'0.35, for the LJ fluid. For simple gases lik
argon or nitrogen one hasZc'0.31.

A word of caution is in order. For the present system w
the rather short-range attractive force, the triple point
rather close to the critical point. No attempt is made here
determine the complete phase behavior. However, there
finite range of temperatures where one has a solid~at high
densities!, an at least metastable liquid~at intermediate den-
sities!, and a gas~at small densities!, all at zero pressure
Physical systems where the liquid phase is only metasta
are fluids composed of C60 and some colloidal solutions@19#.

The curves shown in Fig. 5 stem from a modification
the pressurepcold(n) for particles placed on ideal fcc lattic
sites. More specifically, the pressure in the solid phasepsolid
is computed according to

psolid~n,T!5n kBT1
1

2
pcold„n1s~n,T!…

1
1

2
pcold„n2s~n,T!…, ~6!

where s(n,T)5(2kBT/e2)1/2 with s(n,0)50, and e2
5]2ecold/]n2 is a density difference that takes into accou
that at finite temperatures the particles can approach e
other more closely and can be further apart than atT50. For
temperatures belowT/Tref50.5, the expression given abov
provides a reasonable approximation for the pressure in
solid phase.

IV. ELASTICITY COEFFICIENTS

The elastic properties of an effectively isotropic solid a
characterized by the~isothermal! bulk modulus or compres-
sion modulusB5n(]p/]n)T and by the shear modulusG.
The Born-Green expression@20# for this quantity, used in
MD simulations, is the time average of a two-particle qua
tity, viz.,

GBG5
1

15V K (
i , j

~r 22~r 4f8!8! i j L , ~7!

where the prime denotes the derivative with respect tor. This
high frequency shear modulus is also nonzero in the fl
state@21#. Sometimes it is referred to as the Maxwell she
modulus. The low frequency shear modulusG, which is non-
zero in the solid state but vanishes in the fluid state, is co
puted according toG5GBG1Gfluct @22,23#. The ~negative!
fluctuation contributionGfluct involves a time average of the
square of a two-particle quantity; thus it contains three- a
four-particle contributions. For further details of the expre
sions used in the MD computations see, e.g.,@17# and @24#,
where elasticity coefficients are presented for the WCA p
tential.

In cubic systems, the anisotropy of the shear modulu
reflected by the fact that one needs two coefficients to ch
acterize the shear behavior. These can, e.g., be the la
and smallest values~for fcc and bcc! c44 ~in Voigt notation!
1-4
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and c̃445(c112c12)/2. The modulusc44 is associated with a
displacement and its gradient parallel to the 100 and 0
directions. The shear modulusc̃44 pertains to a deformation
where the displacement and its gradient enclose an angl
45° with the 100 and 010 directions. The expressions u
for the computation of the Born-Green and fluctuation co
tributions ofc44 are

V c44
BG5K (

i , j
S 1

2
~x21y2!r 21f8D i j L

1K (
i , j

~x2y2r 21~r 21f8!8! i j L , ~8!

and

V c44
fluct52

1

kBT
@^C 44

2 &2^C 44&
2#,

with

C44[(
i , j

~xyr21f8! i j . ~9!

For c̃44 one uses similar expressions withxy replaced by
(x22y2)/2. A measure for the anisotropy of the shear mod
lus is the ratiocanis5c44/ c̃44. For an effectively isotropic
solid one hascanis51; for many monocrystalline cubic~fcc
and bcc! substances one finds values between 2 and 4,
both smaller and larger values also occur.

Alternatively, one describes the shear behavior of a cu
solid by the orientationally averaged shear modulusG

5(3c4412c̃44)/5 and the ‘‘cubic’’ modulusGc5 c̃442c44.
The bulk modulus of a cubic system is linked with the Voi
elasticity coefficients byB5(c1112c12)/3. Just like the
shear moduli, the isothermal bulk modulus is the sum o
Born-Green and a~negative! fluctuation contribution,B
5BBG1Bfluct with BBG55GGB/312ppot, and

V Bfluct52
1

9 kBT
@^B 2&2^B&2#

with

B[(
i , j

~rf8! i j . ~10!

Frequently the elastic behavior of an effectively isotrop
solid is also characterized by the Young elasticity modulusE
and the Poisson ration. These quantities are linked with th
bulk modulus and the orientationally averaged shear mo
lus G by E59BG/(3B1G) and n5(1/2)(3B22G)/(3B
1G). In the fluid state one hasG50 and consequentlyE
50 andn50.5. For two-particle interactions, zero temper
ture, and zero pressure the Cauchy relationB55G/3 applies.
Then one hasE55G/2 and n50.25. Solid argon has the
somewhat larger Poisson ratio 0.30. At low temperatur
01120
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one hasn50.27 for iron and nickel, andn50.22 for silicon.
Rather large and small values aren50.41 for gold andn
50.07 for diamond.

For low temperatures, the elasticity coefficients can
inferred from the change of the energy when the ideal latt
is subjected to the appropriate deformation. Alternative
one may use the Born-Green expression involving the fi
and second derivatives of the potential to compute the co
ficients in the undistorted state.

Results of such calculations, here performed us
MATHEMATICA TM, are presented in Figs. 6 and 7. More sp
cifically, the cold shear modulic44, c̃44, E, andG are dis-
played as functions of the density for fcc~solid curves! and
bcc ~dashed curves! solids. Notice thatc̃445(c112c12)/2 is
negative for the bcc case when the density is smaller t
n/nref'1.07. Thus the bcc crystal not only has a larger e
ergy than the fcc crystal~cf. Fig. 3!, but it is also mechani-
cally unstable for densitiesn,1.07nref . The kink seen in the
fcc curves is due to the contributions from the second co
dination shell starting at the densityn/nref51.185. For a less

FIG. 6. The shear modulic44 and (c112c12)/2 as functions of
the density for ideal fcc and bcc lattices. All physical quantities a
in standard LJ units.

FIG. 7. The orientationally averaged shear modulusG and the
elastic modulusE as functions of the density for particles placed o
ideal fcc and bcc lattice sites. All physical quantities are in stand
LJ units.
1-5
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TABLE I. The isothermal bulk modulusB and three shear moduli, all in units of the reference press
pref , as computed in the MD simulation. The superscript BG refers to the Born-Green expression f
shear moduli.

B c44 G Gc c44
BG GBG Gc

BG

44.860.5 35.860.3 28.660.2 218.260.2 41.060.1 32.960.1 220.260.1
C

D

f
pe

ty
e

pe
d

lik
r i
ar

o

n
o b

ge
ou

c-
er
r-

th

-

rom

s as-

any
he

s-

u-
om-
real
i-

tes

he
tion

s
tes

is

s

smooth cutoff such as, e.g., that used in the case of the W
potential, one would have a jump at such a point.

The values for elasticity coefficients as inferred from M
simulations for the solid at the temperatureT/Tref50.6 and
the densityn/nref50.942 are given in Table I, in units o
pref . At this state point, the average potential energy
particle epot and the pressure areepot/F0524.950, p/pref
50.02. The value of the shear modulusc44 as inferred from
G and Gc according toc445G22Gc/5 agrees with the di-
rectly extracted value within the computational uncertain
The same applies to the Born-Green contributions to th
quantities. For the shear modulusc̃44 one infers fromc̃44
5G13Gc/5 the value 17.760.3, in units ofpref . The result-
ing anisotropy coefficient iscanis5c44/ c̃44'2.0. The elastic
modulusE and the Poisson ration as computed from the
values forB and G given in Table I areE'71, in units of
pref , andn'0.24. The ratioG/B is '0.64.

V. VISCOELASTIC AND PLASTIC BEHAVIOR

A. Remarks on nonequilibrium molecular dynamics
simulations

Nonequilibrium molecular dynamics has been develo
and applied to various problems during the last three
cades; for books on this subject see@11–14#. In order to
demonstrate that the model system exhibits typical liquid
and solidlike behavior, examples of viscoelastic behavio
the liquid and of elastic and plastic behavior in the solid
presented next.

Here, we consider a simple shear flow in thex direction
with the gradient of the velocityv in the y direction. The
shear rateġ is given by ġ5]vx /]y. Such a flow can be
generated either by moving boundaries or forces@25–27#, or
as here, by moving image particles undergoing an ideal C
ette flow with the prescribed shear rate~homogeneous shear!.
Let the flow be switched on att50. Then at timet the image
particles above~below! the basic~central! box have moved
in the x direction to the right~left! by the distanceġtL
modulo(L), whereL is the length of the periodicity box in
the y direction. Of course, the periodic boundary conditio
for the particles leaving and entering the basic box have t
modified ~Lees-Edwards boundary conditions,@28#!. For a
system in a fluid state in equilibrium and for not too lar
shear rates, a linear velocity profile typical for a plane C
ette flow is set up in the basic box~from which the data are
extracted!. At high shear rates where pluglike flow also o
curs it is essential to use a velocity ‘‘profile unbiased th
mostat’’ ~PUT, @29,27,30#!. A shear flow can also be gene
ated by modifying the equations of motion~Sllod, so named
because of its close relationship to the Dolls tensor algori
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@11–13#!. For reviews of NEMD results for rheological prop
erties of simple and complex fluids, see@31–33#.

Rheological properties such as the~non-Newtonian! vis-
cosity and the normal pressure differences are obtained f
the Cartesian components of the stress tensorsmn52pmn or
of the pressure tensorpmn which is the sum of kinetic and
potential contributionspmn5pmn

kin1pmn
pot ,

Vpmn
kin5K (

i
mcm

i cn
i L , Vpmn

pot5
1

2 K (
i j

r m
i j Fn

i j L . ~11!

Hereci is the specific velocity of particlei, i.e., its velocity
relative to the flow velocityv(r i), r i j 5r i2r j is the relative
position vector of particlesi , j , and Fi j is the force acting
between them. As before, the greek subscriptsm,n, which
assume the values 1,2,3, stand for Cartesian component
sociated with thex,y,z directions. In the simulations, the
expression for the pressure tensor is averaged over m
(103 to 106) time steps. For the present flow geometry, t
~non-Newtonian! viscosityh is obtained by dividing the long
time average of theyx(21) component of the stress or pre
sure tensor by the shear rate:h5syx /ġ52pyx /ġ.

From the simulation, the kinetic and potential contrib
tions to the pressure tensor and to the viscosity can be c
puted separately. Only the sum can be measured in a
experiment. The kinetic contribution to the viscosity dom
nates in dilute gases@34#. In dense fluids~liquids! the poten-
tial contribution is more important.

Normal stress or pressure differences, e.g.,sxx2syy
5pyy2pxx , have also been computed. At small shear ra
one finds2pyx;ġ and pyy2pxx;ġ2, as well aspxx1pyy

22pzz;ġ2.

B. Viscoelastic behavior of the liquid

The viscoelastic behavior of a fluid is revealed by t
growth of the shear stress in response to a shear deforma
g5ġt that is switched on att50. In Fig. 8, the shear stres
s5sxy is shown as a function of the time for the shear ra
ġ/ġ ref50.173,0.346~bottom graph! and 0.87,1.73~upper
graph! for a liquid. The reference value for the shear rate
ġ ref51/t ref with t ref5r 0 /v ref wherev ref5(F0 /m)1/2 is a ref-
erence velocity. The temperature and the density areT/Tref
50.6 and n/nref50.725, respectively. The dashed line
through the origin indicate the short-time behaviors

5GMġt with the Maxwell shear modulusGM equal to the
Born-Green valueGBG515pref as inferred from the MD
simulation. The full curves are the solutions5hġ„1
2exp(t/tM)… of the Maxwell model with the~shear rate de-
1-6
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pendent! Maxwell relaxation timetM5h/GM . The values
for the viscosity areh/h ref51.73,1.64,1.56,1.26, in increa
ing order of the shear rate. The reference viscosity ish ref
5preft ref . The dashed horizontal lines indicate the values
shear stress would approach if the~non-Newtonian! viscosity
h, as inferred from the long-time average (t@tM), did not
decrease with increasing shear rate. The stress overs
seen for the highest shear rate still stays below this limit.
reason of completeness, the full stationary non-Newton
shear viscosity as a function of the shear rate as obtaine
NEMD simulations forT/Tref51 andn/nref50.75, as well
as its kinetic and potential contributions, are shown in Fig
Shear thinning is seen for shear ratesġ/ġ ref.1. The values
for the zero rate viscosity at the state point studied
hkin /h ref50.1260.01, hpot/h ref51.5060.07, and h/h ref
51.6160.08. The corresponding values computed in
~adiabatic! equilibrium simulation~at the same density, wit
an average temperatureT/Tref50.99) from integrals over the
relevant time correlation functions arehkin /h ref50.10
60.02, hpot/h ref51.4860.09, and h/h ref51.5860.11.
There is good agreement within the computational unc
tainty. The dashed curves above and below the line for
kinetic contribution~see Fig. 9! indicate the statistical uncer
tainty of the viscosity which, for small shear rates, increa
proportionally to ġ21/2 when the averaging timetav over
which the data are extracted is chosen, as usual, atav

5C/ġ, with a constantC. Here C>20 was used. For th
other two viscosities, the corresponding curves are not

FIG. 8. The shear stress in the liquid phase as a function o
time, for four shear rates. The~full ! curves correspond to solution
of the Maxwell model. The dashed lines through the origin mark
short-time elastic behavior. All physical quantities are in stand
LJ units.
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played since they could hardly be seen on the scale of
figure. For comparison, some values for the viscosity of
LJ liquid ~with cutoff distancer 52.5) at some similar state
points, all forT/Tref51, as found in the literature, are men
tioned. In particular, in Ref.@35# for the two densities
n/nref50.70 (0.84) the following extrapolated viscositie
were obtained: hkin /h ref50.1660.06 (0.1060.03),
hpot/h ref51.160.1 (2.560.1), and h/h ref51.2660.16
(2.660.13). By evaluating a Green-Kubo formula for th
comparable densityn/nref50.72, the viscosity values
h/h ref51.360.10, andh/h ref51.2560.13 were reported in
Refs. @36# and @37#, respectively. These data, together wi
the value for the shear rateġonset at onset of shear thinning
ġonset'ġ ref extracted from the data in Ref.@35# for the LJ
fluid, reveal that the SHRAT fluid exhibits both a zero ra
shear viscosity and shear rheological properties very clos
the ones obtained for the LJ fluid. The shear thinning
associated with structural changes in the fluid that have b
analyzed previously for other model substances@38#.

C. Plastic flow of the solid

The elastic response and the plastic yielding of a solid
the temperatureT/Tref50.6 and the densityn/nref50.942,
where the pressure is approximately zero, are presente
Fig. 10. More specifically, the shear stress is plotted a
function of the time for a linearly growing displacement wi
the shear rateġ/ġ ref50.001. The thick and thin curves tha
stay close to each other correspond to isothermal simulat
where one starts from an ‘‘aged’’ equilibrium state and fro
particles placed on ideal fcc lattice sites, respectively. T
full and the dashed straight lines through the origin descr
the elastic behavior with the full shear modulusc44 ~labeled
G) and the Born-Green contribution~labeledBG) to this
modulus. The curve where the yield point occurs later, a
deformationg'0.15 rather than 0.12, also pertains to a st

e

e
d

FIG. 9. Shear viscosity as a function of the shear rate as
tained in NEMD simulations forT/Tref51 andn/nref50.75. The
small and large gray dots mark the kinetic and potential contri
tions to the viscosity and the black dots represent their sum, v
the ‘‘total’’ shear viscosity. Shear thinning is seen for shear ra

ġ/ġ ref.1. The ~solid and dashed! horizontal lines indicate the av-

erages of the data points forġ/ġ ref<1. The meaning of the othe
curves is explained in the text.
1-7
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tup from an ideal lattice but now to an adiabatic rather th
an isothermal simulation. Notice that the elastic behavior
seen in Fig. 10 lasts about 1000 times longer than that of
liquid shown in Fig. 8.

For small shear rates, the elastic behavior and the oc
rence of the yield point are approximately independent of
shear rate. The plastic flow behavior beyond this point, ho
ever, does depend onġ. This is shown in Fig. 11 where th
shear stress is displayed as a function of the time for
shear ratesġ/ġ ref50.001,0.002,0.005. The start is from a
aged equilibrium state. In all cases the end times are cho
such that one has a shear deformationg51.0. At the smallest
rate one observes a pronounced stick-slip flow; at hig
shear rates a more continuous plastic flow occurs. The ef
tive viscosity inferred from the long-time average of she
stress~or about one-half the maximum stress at the yie
point! divided by the shear rate is several hundred tim
larger than the viscosities in the liquid state.

The stick-slip behavior, seen at the smallest shear r
shows eight maxima of the shear stress over a shear d
mation g51. The periodicity box contains 238 layers of
particles; the displacement between opposite sides of the
is gbox58g. Slips obviously occur whengbox exceeds 1.
Thus the eightfold repetition seems to be associated with
size of the system. The initial yielding at deformations ju
above 0.10, however, occurs for all shear rates shown.
latter phenomenon is an intrinsic property of the solid, an
may be expected in view of the Lindemann criterion whi
says that a crystal will melt when the displacement of ato
exceeds about one-tenth of the lattice constant. Of cours
is desirable to study the plastic flow at longer times and
analyze the structural changes. This, however, is outside
scope of the present article.

VI. SCALING AND REFERENCE VALUES

When one wants to compare properties as computed
with those of real materials, one has to specify the para

FIG. 10. The shear stress, in the solid phase, as a function o

time for the shear rateġ/ġ ref50.001. All physical quantities are in
standard LJ units.
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eters of the interaction potential, viz., the well depthF0, the
characteristic lengthr 0, and the massm of the particles. It is
stressed again that we do not want to mimic a particu
substance but to provide a feeling for the order of magnitu
of the reference quantities for various cases of interest. As
estimate forF0 andr 0 one can use one-sixth of the bindin
energyeb of an atom and the inverse of the third root of th
number density, respectively, in the low temperature so
Three sets of values are presented in Table II. The first on
the familiar argonlike substance, referred to as Ar. The s
ond one is a substance composed of C60 molecules where
values for the well depth and forr 0 were proposed in@19#,
although for a different, but also short-range, potential. T
third set, referred to as SM, for standard material, is copp
like since the values for the characteristic energy, distan
and mass are chosen to match those of copper. As far a
orders of magnitude are concerned these values are typ
for many solid materials one can touch every day. The co
age metals like silver, copper, gold, iron, and nickel ha
rather similar binding energies and interparticle distanc
viz., 3.0,3.5,3.8,4.3,4.4 eV and 0.26,0.23,0.26,0.23,0.22

the

FIG. 11. The shear stress, in the solid phase, as a function o

time for the shear ratesġ50.001,0.002,0.005. All physical quanti
ties are in standard LJ units.
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TABLE II. The characteristic reference values needed to convert the dimensionless variables used in the calculations to
quantities for argon-, C60-, and copperlike~the ‘‘standard material’’! substances.

eb r 0 mass Tref nref pref v ref t ref ġ ref
h ref

Substance ~eV! ~nm! (10227 kg) ~K! (nm23) (106 Pa) ~m/s! (10212 s) (109 s21) (1023 Pa s)

Ar 0.08 0.34 66.7 160 25.4 40.7 182 18.7 53.5 0.76
C60 1.66 0.96 1202 3200 1.13 36.4 19.2 49.9 20.0 1.81
SM 3.5 0.23 106 6800 82.2 5590 941 2.45 410 13.7
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respectively. The values for germanium and silicon are
much different, viz., 3.9,4.6 eV and 0.28,0.27 nm.
course, a true modeling of these materials requires m
complicated potential functions, and is therefore not cons
ered in this work. As input for Table II we used either th
binding energy eb or the temperature Tref5F0 /kB
5eb /(6kB) associated with the potential well depth, eith
the diameterr 0 or the number densitynref5r 0

23, and the
massm. The derived reference quantities which are listed
Table II arepref for the pressure, the stress, and the elastic
coefficients,v ref andt ref for the velocity and the time, as we
as ġ ref andh ref for the shear rate and the viscosity.

VII. CONCLUDING REMARKS

In this article, a simple polynomial SHRAT potential ha
been introduced. It has a repulsive core, an attractive p
and is rather short ranged. The cutoff is smooth, such that
first and second derivatives vanish at the cutoff distan
These cooperative features produce considerable advan
in numerical studies; they enable efficient simulation stud
of a model material that exhibits similarities to a full~but
computationally expensive! LJ potential. The thermophysica
properties of the model were calculated by MD and NEM
computer simulations. From a study of the pressure a
function of the density for various temperatures, the~co!ex-
istence of gaseous, metastable liquid, and solid~fcc! phases
was found. Equations of state that fit the simulation data
certain regions of densities and temperatures were given.
elasticity coefficients and bulk and shear moduli, were de
mined both from MD and, for low temperature solids, b
analytic lattice calculations. Particular attention was paid
the response of the system to an imposed shear deforma
switched on and proceeding with a constant shear rate. In
liquid state, typical viscoelastic behavior was observ
which can be described with a Maxwell model. The so
shows elastic behavior for small deformations. Beyond
critical deformation, the solid yields and undergoes a tran
tion to plastic flow. At extremely small shear rates, the m
tion is of stick-slip type; at larger shear rates it is more co
tinuous. Some examples were given for possible choice
the relevant model parameters and for the reference va
needed to convert the dimensionless quantities used in
calculations to physical ones. The measured stationary s
viscosities for the SHRAT fluid compare very well with da
previously reported for the LJ potential~cutoff at r 52.5).

The SHRAT potential is suitable for further studies
equilibrium and nonequilibrium properties. In particular, t
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long–time behavior of the solid undergoing plastic flow an
the accompanying structural changes should be analyzed
comparison of the present model material with a metal mo
eled by the embedded atom method is desirable.

Colloidal dispersions can be looked upon as macroflu
and solids. With appropriate modifications, the present c
culations could be applied to dispersions composed
spherical particles. The potential parameters could
guessed by the same method as used successfully in@39# to
correlate results obtained from systems with screened C
lomb and with soft sphere interactions. A comparison w
experimental data on shear deformation and plastic flow
colloidal crystals@40# should be rewarding.

Furthermore, the extension of the present approach
fluids composed of nonspherical particles is desirable. Liq
crystals can be treated by using the ideas of Gay a
Berne@41,42# or of @43#. By introducing additional binding
forces between the particles, one models chain molecu
and treats polymeric liquids. As well as using LJ potentia
to bind nearest neighbors along polymeric chains@44#, it has
become standard to use the WCA potential@45# or also a
truncated LJ potential@46# as the interaction between all par
ticles in the fluid and to combine it with a ‘‘finitely exten-
sible nonlinear elastic’’~FENE! potential @45# of the type
2(1/2)kF0(h/r 0)2 ln(12r2/h2) for r ,h in order to model
the interaction between every two adjacent monomers i
chain molecule. Here the quantityk is a spring coefficient,
frequently chosen ask530 for polymer melts, together with
h51.5r 0 for the cutoff distance and the maximum extensio
of a bond. Instead of the WCA potential, we propose
combine the present SHRAT potential with the FENE pote
tial, with k520 andh51.5r 0. Compared with the potentials
formerly applied to computations for polymers, this mode
ing has the advantage that states at zero pressure ca
studied. Yet the computational advantages of the short ra
of the potential remain. It is expected that the liquid pha
will be broader in the macromolecular systems than in t
case considered here since crystallization becomes more
ficult. On the other hand, the liquid state will have to com
pete with the glassy state.
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